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Introduction
Human population relies heavily upon consistent 

and stable production of crops. One of the most 
important groups of crops in the Baltics is small 
grain cereals – wheat (Triticum aestivum L.), rye 
(Secale cereale L.), oat (Avena sativa L.) and barley 
(Hordeum vulgare L.), (Official statistics portal of 
Latvia (2023); Official statistics portal of Lithuania 
(2023) Statistics Estonia; (2023)).

Conventional and integrated cultivation of small 
grain cereals involves intensive fungicide application 
because these crops are susceptible to many fungal 
diseases. Most common fungal leaf diseases of small 
grain cereals in the Baltics are caused by the following 
pathogens: Blumeria graminis, Parastagonospora 
nodorum, Puccinia recondita, Puccinia striiformis, 
Zymoseptoria tritici, Fusarium spp., Rhynchosporium 
secalis, Pyrenophora teres, Pyrenophora avenae and 
Pyrenophora tritici-repentis (Sooväli & Koppel, 
2003; Semaškiene & Ronis, 2004; Skuodienė & 
Nekrošienė, 2009; Bankina et al., 2011; Gaurilčikiene 
et al., 2011; Bankina et al., 2013).

Plant health monitoring and early pathogen 
detection are critical to reduce the spread of disease 
and promote effective management practices. 
For pathogenic fungi detection and severity 
evaluation, three methods are currently used: (i) 
visual examination of diseased plants; (ii) pathogen 

identification on morphological features; (iii) 
molecular and serological methods (Martinelli et al., 
2015). Visual disease examination by the agronomist 
or plant pathologist is mostly used in everyday 
farming, especially in small farms, but along with 
some advantages, like low costs, speed, the possibility 
to evaluate the status of infection, and no need for 
expensive infrastructure, there are some crucial 
limitations including high variability of conclusions 
due to different levels of individual knowledge and 
experience, human error and difficulty/impossibility 
to precisely monitor a large area of the crop (Bock et 
al., 2010; Martinelli et al., 2015). Additionally, visual 
examination of some fungal diseases is ineffective in 
the early stages, when there are no visual symptoms, 
such as lesions on the surface of the leaves, and only 
physiological/biochemical response mechanisms of 
plants, such as the reduction of the photosynthesis, 
are involved (West et al., 2003). Identification of 
pathogens based on morphological features involves 
the isolation of fungal pathogens on suitable standard 
agar medium and analysis of culture characteristics, 
e. g. colony morphology, color, and asexual structures 
like sporangia, conidia, chlamydospores, sclerotia, 
etc. Light microscopes are used to study fungal 
structures (sporangia, conidia, and others), and the 
conclusions about the taxonomy and classification 
of a pathogen are based on the characteristics of 
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the listed structures (Narayanasamy, 2011). This 
approach is more accurate than visual assessment. 
However, it also involves expensive infrastructure, 
and it is restricted to large-scale applications, and in 
vitro cultivation is time-consuming (Narayanasamy, 
2011). Molecular and serological methods mostly 
involve PCR (Polymerase Chain Reaction), 
hybridization, or biochemical assays. Molecular and 
serological methods are accurate and very sensitive, 
but they are restricted to large-scale applications, 
because of complicity and costs. They are unsuitable 
for disease status monitoring as they involve 
collecting samples mostly from plants with already 
clearly visible symptoms of disease; in some cases, 
it may misrepresent the real status of infections. 
Besides, molecular and serological methods require 
detailed sampling procedures, as well as expensive 
infrastructure (Martinelli et al., 2015; Kashyap & 
Kumar, 2021).

Combining recent discoveries in microelectronics, 
optics, and data analysis an innovative and technology-
based optical method, hyperspectral imaging has 
been developed, which can be also applied to a plant 
disease detection. Hyperspectral imaging is easy to 
use, non-destructive, and can be implemented in 
automated systems (e.g. unmanned aerial vehicles), 
considerably lowering workload (Mahlein, 2016). 
The main idea of using hyperspectral imaging is 
to measure the relationship between the spectral 
reflectance properties of plants and their structural 
features, pigment concentrations, water levels, etc., 
which are affected by plant biotic stress (Mahlein, 
2016).

Materials and Methods
In the present study, the monographic method was 

used. The results of worldwide research on the use 
of hyperspectral analysis in the detection of foliar 
fungal diseases of small grain cereals (wheat, rye, 
oat, and barley) were studied as well as overall issues 
of hyperspectral imaging and data analysis were 
analysed and summarized.

Results and Discussion
Basic principles of hyperspectral imaging

Contrary to widely used consumer digital cameras 
which capture only three bands of the electromagnetic 
spectrum (red, green, and blue light), a hyperspectral 
sensor measures up to several hundred bands of the 
electromagnetic spectrum in the wavelength range 
of visible (400–700 nm), near-infrared (700–1000 
nm) and short-wave infrared (1000–2500 nm) part 
of the electromagnetic spectrum (Lowe, Harrison, 

& French, 2017; Thomas et al., 2018). Each pixel 
in a hyperspectral image acquires a different set of 
information about the reflectance (or transmittance) 
in each spectral band, and the sum of this information 
is called the spectral signature or spectral profile 
(Delalieux et al., 2007; Mahlein et al., 2013; Rumpf 
et al., 2010).

Interactions between plant biophysical (e.g. leaf 
surface, tissue structure) and biochemical properties 
(e.g. pigment and water content) determine the 
patterns of leaf reflectance spectra (Blackburn & 
Ferwerda, 2008). Generally for green leaves, the 
visible light (VIS) region of electromagnetic radiation 
(400–700 nm) is responsible for light absorption by 
photosynthetic and other pigments; the near-infrared 
(NIR) region (700–1100 nm) is dominated by dry 
matter absorption; and in the shortwave infrared 
(SWIR) region (1100–2500 nm) water absorption 
occurs (Mishra et al., 2017). Significant changes in 
leaf reflectance induced at specific wavelengths in 
the visible (380–750 nm) and far-red (690–720 nm) 
ranges are more important than changes in reflectance 
in other regions of the electromagnetic spectrum to 
diagnose biotic stress (Carter, 1994 cited by Marín-
Ortiz et al., 2020; Carter & Knapp, 2001).

Non-imaging hyperspectral sensors measure 
the average spectral reflectance in the field of view 
without spatial information. The area with a full 
spectral profile is obtained, the size of the area covered 
depends on the focal length, the angle of view, and 
the distance from the target. Because symptoms of 
early plant diseases often appear at sizes smaller than 
1 mm, the use of non-imaging sensors for disease 
detection in some situations is limited (Thomas et 
al., 2018). This is why hyperspectral imaging offers 
much higher capabilities in disease detection.

Imaging hyperspectral sensors or hyperspectral 
cameras obtain image data with spatial and high 
spectral resolution (Terentev et al., 2022). Mostly 
the cameras are divided by spectral range: (i) visible 
and near-infrared (VNIR) cameras have a spectral 
range of 400–1000 nm and (ii) short-wave infrared 
(SWIR) cameras provide a spectral range of 900–
2500 nm (Moghadam et al., 2017; Bohnenkamp et 
al., 2021) and by the spectral scanning type: push-
broom, point scan, and snapshot (Kim & Cho, 2019; 
Mishra et al., 2020). In recent years, a wide range 
of mini and medium-sized hyperspectral cameras 
for reasonable prices have been developed, and 
they can be used to capture small-size features 
of vegetation (at leaf and canopy level) including 
investigation of crop growth status, detection of 
early signs of crop stress caused by disease, weeds, 
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nutrition deficiency, etc. (Lu et al., 2020).
A hyperspectral imaging system consists of four 

main elements: (i) a camera, (ii) a light source, (iii) 
a sample stage (no obligate), and (iv) corresponding 
control software (Morais et al., 2019). The main 
elements of the imaging unit are the lenses, an 
imaging spectrograph, and an area detector. The light 
from the object passes through the objective lenses 
and enters a spectrograph. A spectrograph is a device 
used to disperse light into specific wavelengths. 
The scattered light is projected onto a detector that 
converts the photons into electrical signals that can 
be measured as the strength of different wavelengths 
into intensity values. Mostly there are two types of 
detectors – charge-coupled-device (CCD) camera or 
complementary metal-oxide-semiconductor (CMOS) 
camera (Mishra et al., 2017; Morais et al., 2019).

Different environmental conditions affect the 
results of hyperspectral imaging, of which lighting 
is the most important. The lighting system should 
provide adequate light intensity and composition 
without critical prevalence in a specific wavelength 
range, including sunlight other light sources such as 
tungsten halogen lamps (with different modifications), 
mercury or metal halide lamps, and light-emitted 
diodes (LED), can be used, each of the light sources 
has its advantages and limitations (Mahlein et al., 
2015). For the lighting calibration the measurement 
of reference material, with known reflection is 
another obligatory element to normalize the images 
(Lowe, Harrison, & French, 2017).
Data analysis

Hyperspectral imaging involves the integration 
of two acquisition modes: spectroscopy and imaging 
(Amigo, Babamoradi, & Elcoroaristizabal, 2015). 
A camera detects spectral signatures and spatial 
information from the surface of an object within the 
sensor field of view. A hyperspectral image consists of a 
series of narrow-band sub-images arranged across the 
reflectance spectrum, forming a 3-D cube or spectral 
hypercube (Amigo, Babamoradi, & Elcoroaristizabal, 
2015; Mishra et al., 2017). The hyperspectral curve 
obtained by measuring plant leaves contains noise 
and variations of structural features, so there is a 
need to do some curve transformations that should 
be performed before spectral analysis to describe the 
spectral curve more accurately and according to the 
most important structural features (Song et al., 2011). 
Generally, information gathering from hyperspectral 
images requires the following steps (methods): (i) 
preprocessing treatment, (ii) feature extraction, (iii) 
analysis, and (iv) acquisition of desired information 
(Bravo et al., 2003; Morais et al., 2019).

From a plant disease detection perspective, 
different data analysis methods are used to answer 
three main questions: (i) Is the disease present? (ii) 
What specific disease is affecting the plant? and (iii) 
How severe is the disease (quantifying the degree 
of severity)? There are two main approaches to 
answering those questions: (i) the use of spectral 
vegetation indices or (ii) the use of computer vision, 
machine learning, and deep learning methods.

Besides detecting the presence of disease, an 
important task for image analysis is to distinguish 
between different diseases and identify a specific 
pathogen. A possible solution is spectral information 
divergence classification, which compares the 
deviation between the observer spectra and reference 
spectra (spectral library or averaged spectra of 
interest from the data), where similarity is based on 
the smaller deviation value. If the divergence value 
between the observed spectrum and a reference 
spectrum is larger than a set threshold, the observed 
spectrum is not classified as matching the reference 
spectrum (Du et al., 2004).

Spectral Vegetation Indices (SVI) is a widely used 
approach for analyzing and detecting changes in plant 
physiology and chemical composition (Mahlein et 
al., 2013). The indices are based on the reflectance (or 
absorption) of certain wavelengths and are designed 
to evaluate various plant parameters, such as pigment 
content (Blackburn, 1998), leaf area (Rouse et al., 
1974 cited by Bravo et al., 2003) or water content 
(Peñuelas et al., 1993 cited by Mahlein et al., 2013). 
Usually, a particular spectral vegetation index has a 
quantitative relationship to a specific trait of interest, 
i.e. the pigment or water content of the products 
(Mahlein et al., 2013). Spectral vegetation indices are 
evaluated using a specified formula, which usually 
combines the reflectance of a few bands into a single 
index. One of the most commonly used spectral 
vegetation indices is the Normalized Difference 
Vegetation Index (NDVI) (Rouse et al., 1974 cited by 
Bravo et al., 2003) it is used to estimate biomass, plant 
vitality, and ‘greenness’. The popularity of NDVI is 
linked to its potential for application at the field scale, 
its ability to separate vegetation and soil, or evaluate 
the vitality of the crop (Bravo et al., 2003). There 
are also other common SVIs: Red edge normalized 
ratio (NRred edge); Photochemical reflectance index 
(PRI); Green chlorophyll index (Clgreen); Carotenoid 
reflectance index (CRI); Simple ratio index (SRI); 
Water index (WI); Moisture stress index (MSI), etc. 
(Lowe, Harrison, & French, 2017; Zhang & Zhou, 
2019).

Several successful efforts have been also made 
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to apply spectral vegetation indices for the detection 
of plant diseases (Hatfield et al., 2008), but wide-
scale usage for specific disease detection has not 
been attempted, because these indices lack disease 
specificity and do not assess other factors, such 
as abiotic stress, coupled biotic stress factors, etc. 
(Mahlein et al., 2013). A possible solution could 
be the combination of different wavelengths with 
spectral disease indices which allows the detection 
of the disease with spectral sensors, considering that 
each disease has a specific spectral signature (Mahlein 
et al., 2013).

As an example, the health index is based on the 
normalized reflectance difference at 534 to 698 nm and 
the absolute reflectance at 704 nm. The health index 
can be combined with the powdery mildew index, 
which is calculated on the normalized reflectance 
difference of 520 and 584 nm and the absolute 
reflectance at 724 nm (Mahlein et al., 2013). Generally, 
disease detection based on spectral vegetation indices 
or spectral disease indices is characterized as a 
simpler method, which doesn’t include complicated 
data analysis, data library collection, and machine 
learning, but the main disadvantage is low specificity 
and a narrow possibility to use it for early disease 
detection.

A direction with higher practical application 
potential is data analysis using machine learning, 
deep learning, and computer vision methods. The 
deep learning approach is based on different neural 
networks (convolutional, artificial, radial basis 
function neural networks, etc.), and the difference 
is related to the used vision system (Arens et al., 
2016; Lowe, Harrison, & French, 2017; Ramya et al., 
2020). Artificial neural networks are interconnected 
collections of nodes called ‘neurons’ where every 
‘neuron’ analyses one element of input data or one 
pixel of the image (Ramya et al., 2020).

The machine learning approach is based on 
an algorithm to model knowledge of data, in other 
words, it is a data analysis technique that teaches 
computers (artificial intelligence) to do what humans 
and animals naturally learn from experience. There 
are four types of machine learning: unsupervised 
learning, semi-supervised learning, supervised 
learning, and reinforcement learning (Ramya et al., 
2020).

Generally, deep learning is more complex than 
disease detection based on vegetation indices, but 
with the added efforts very impressive rates of 
classification and recognition are achievable.
Hyperspectral imaging application for foliar fungal 
disease detection on small grain cereals

In the last couple of decades, a lot of research has 
been done involving the use of hyperspectral imaging 
for the detection of disease or severity evaluation of 
fungal disease of small grain cereals, but most often 
in wheat. Some examples are analysed below.

Zhao et al. (2014) studied the severity of 
yellow rust (caused by Puccinia striiformis) on 
individual plant leaves of wheat using a field portable 
hyperspectral spectrometer. The results indicated 
that changes in the content of foliar water and 
chlorophyll were induced by yellow rust, but the 
reflectance values varied depending on the adaxial 
or abaxial surfaces of the leaf. Authors conclude 
that hyperspectral measurements of wheat leaves to 
evaluate severity are more appropriate at later stages 
of disease development (Zhao et al., 2014). Guo et 
al. (2020) examined the possibility of yellow rust 
identification on wheat leaves based on spectral and 
textural features of hyperspectral images. A support 
vector machine and different features (optimum 
wavebands, vegetation indices, and textural features) 
were used with the best results reached when the 
models included a combination of both spectral and 
textural features (Guo et al., 2020).

Infection of plants by wheat powdery mildew 
(caused by Blumeria graminis f. sp. tritici) was 
studied by Zhang et al. (2016) using hyperspectral 
imaging analysis to detect the effect of differentiating 
background (shadows) on the effectiveness of 
identification of infected and healthy plant leaves. 
Five different vegetation indices and classification 
and regression trees were used to analyze the data. 
Healthy leaves were identified with the highest 
accuracy of 99.2%, while infected leaves were 
determined with an accuracy of 88.2% and 87.8%, 
respectively (Zhang et al., 2016). In another study 
of powdery mildew, a hyperspectral imaging dataset 
and machine learning algorithms were used (Zhao 
et al., 2020). Three methods were compared – 
random forest, principal component analysis, and 
the successive projections algorithm. The highest 
accuracy of 93.33% by a cross-validation method was 
reached by applying a support vector machine model 
based on principal component analysis (Zhao et al., 
2020).

For Septoria tritici spot disease detection and 
severity assessment, a hyperspectral data library of 
the canopy from 335 wheat cultivars was collected 
using a spectroradiometer by Yu et al. (2018). The 
authors obtained the following results: (i) canopy 
reflectance and selected indices could be used to 
quantify Septoria tritici patches, and (ii) the best 
efficiency was achieved, using normalized difference 
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water index with an accuracy of 93% (Yu et al., 2018). 
On 18 different wheat genotypes and disease-free 
plots, Anderegg et al. (2019) collected time-resolved 
hyperspectral reflectance data from the canopy. The 
lack of specificity and disease assessments were 
confirmed by gained results although used data 
analysis methods based on reflectance spectra at 
individual time points were indicative of the presence 
and severity of Septoria tritici blotch infections.

A microscope with a hyperspectral camera was 
used to study the interaction between powdery 
mildew and barley genotypes with high susceptibility 
by Kuska et al. (2017). Qualitative and quantitative 
assessments of pathogens were used to explain changes 
in hyperspectral signatures. Analysis of hyperspectral 
images which reflects the development of the disease 
revealed spectral characteristics of hyperspectral 
response against the pathogen. Hypersensitive 
response spot localization was based on an advanced 
data mining approach before the spots became visible 
on the RGB images. Gained results show that sensor-
based phenotyping is suitable to facilitate expensive 
and time-consuming visual assessment of plant 
disease resistance (Kuska et al., 2017). In another 
research barley plants inoculated with powdery 
mildew, brown rust (caused by Puccinia hordei), 
and net blotch (caused by Pyrenophora teres) were 
studied using data mining techniques of hyperspectral 
time-series image datasets (Wahabzada et al., 2015). 
The authors were able to identify differences between 
the symptoms of three pathogens and illustrate the 
crucial trends of spectra during disease development 
on barley plants (Wahabzada et al., 2015).

Most of the studies were conducted in controlled 
conditions and inoculation was done by known 
pathogens; however, in field conditions plants are 
exposed to abiotic stresses, such as salinity, extreme 
temperature, nutrient stress, or drought, resulting 
in decreased plant defence capacity and increased 

susceptibility to biotic stresses that cause additional 
changes into disease detection models (Mittler & 
Blumwald, 2010; Szittya et al., 2003; Zhu et al., 
2010). Additionally, some studies have revealed that 
plants prioritize their responses to attain one of the 
individual stresses which involved in combination 
of biotic and abiotic stress combinations (Atkinson 
et al., 2012; Schenke, Bottcher, & Scheel, 2011). 
Therefore, analysing hyperspectral data gained 
in field conditions abiotic stress factors should be 
considered (Suzuki et al., 2014).

Conclusions
1. There has been a significant increase in the scientific 

literature over the recent couple of decades, 
focusing on detecting biotic and abiotic stress in 
plants using hyperspectral image analysis.

2. Early detection of crop diseases would allow 
controlling the spread of the disease more 
effectively, thus reducing yield and quality losses 
and minimizing the negative impact of agriculture 
on the environment.

3.  One of the main reasons for the increase in usage 
of hyperspectral imaging is the reduction of 
the costs of a camera and the improvement of 
technical parameters.

4. The number of vegetation and disease indices is 
increasing, the combination of different indices 
and significant wavelengths can improve the 
effectiveness of disease status indication; 
however, the accuracy is affected by other abiotic/
biotic factors.

5. Computer vision, machine learning, and deep 
learning methods have a great potential for 
practical application in the future although 
currently there are not many successful examples 
of usage for the detection of fungal diseases of 
small grain cereals.
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